EQUAÇÃO GERAL DE GRACELI.[quantização de Graceli].
G ψ = E ψ = E [G+].... .. =
G ψ = E ψ = E [G+ψ ω /c] = [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] [ q G*]ψ μ / h/c ψ(x, t) x [ t ]..
[ G ψ = E ψ = E [G+].... ..
q G*] ==SISTEMA GRACELI DE:
TENSOR G+ GRACELI = SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO E ESPECÍFICO NÍVEL DE ENERGIA., POTENCIAL DE ENERGIA, POTENCIAL QUÍMICO, SISTEMA GRACELI DO INFINITO DIMENSIONAL.
ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.
[
q G*] = energia quântica Graceli.EQUAÇÃO GERAL DE GRACELI.[quantização de Graceli].
G ψ = E ψ = E [G+].... .. =
G ψ = E ψ = E [G+ψ ω /c] = [/ ] / / = ħω [Ϡ ] [ξ ] [,ς] [ q G*]ψ μ / h/c ψ(x, t) x [ t ]..
[ G ψ = E ψ = E [G+].... ..
q G*] ==SISTEMA GRACELI DE:
TENSOR G+ GRACELI = SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO E ESPECÍFICO NÍVEL DE ENERGIA., POTENCIAL DE ENERGIA, POTENCIAL QUÍMICO, SISTEMA GRACELI DO INFINITO DIMENSIONAL.
ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.
[
q G*] = energia quântica Graceli.Na física, teoria de campo de Liouville, ou simplesmente (teoria de Liouville) é uma teoria quântica de campos bidimensional cuja equação clássica de movimento se assemelha a equação diferencial não-linear de segunda ordem de Joseph Liouville a que aparece no problema geométrico clássico de uniformização de superfícies de Riemann.
A teoria de campo é definida pela ação local:
- / G ψ = E ψ = E [G+].... ..
onde é a métrica do espaço bidimensional em que a teoria de campo é formulada, é o escalar Ricci de tal espaço, e é um acoplamento constante real. O campo é consequentemente chamado de campo Liouville.
A equação de movimento associado a esta ação é ::
/ G ψ = E ψ = E [G+].... .. onde / G ψ = E ψ = E [G+].... .. é o operador de d'Alembert nesse espaço. No caso, a métrica do espaço sendo a métrica Euclidiana e utilizando a notação padrão, torna-se a equação clássica de Liouville.
- [1] / G ψ = E ψ = E [G+].... ..
Max Planck obteve a forma correta da distribuição porque postulou a quantização da energia dos osciladores harmônicos que comporiam as paredes da cavidade que confina a radiação. Essa hipótese teve por efeito introduzir um limite máximo de freqüência acima do qual há um corte (cutoff) nas contribuições dos entes (ondas eletromagnéticas) que estão em equilíbrio.
Einstein, para explicar o efeito fotoelétrico, ampliou o conceito da quantização para a energia radiante, postulando a existência do fóton (o que "implicitamente" quer dizer que as equações de Maxwell não tem validade ilimitada, porque a existência do fóton implica não-linearidades).
A antiga teoria quântica cedeu lugar à mecânica quântica moderna quando Schrödinger desenvolveu a famosa equação que leva o seu nome. Entretanto, a primeira versão que ele desenvolveu foi a equação que hoje é conhecida como equação de Klein-Gordon, que é uma equação relativista, mas que não descrevia bem o átomo de hidrogênio, por razões que só mais tarde puderam ser entendidas. Assim, ele abandonou a primeira tentativa, chegando à sua equação (equação de Schrödinger):
/ G ψ = E ψ = E [G+].... .. A equação de Schrödinger acima colocada é a equação "dependente do tempo", pois o tempo aparece explicitamente. Neste caso, as soluções são funções das coordenadas espaciais e do tempo.
Quando o potencial não depende do tempo, ou seja, quando o campo de força ao qual a partícula está submetida é conservativo, é possível separar as variáveis e .
A equação que a parte espacial da função de onda obedece é:
/ G ψ = E ψ = E [G+].... .. conhecida como equação de Schrödinger "independente do tempo". Esta é uma equação de autovalores, ou seja, através dela se obtêm simultaneamente autofunções (no caso as funções de onda ) e autovalores (no caso, o conjunto das energias estacionárias ).
Formulação matemática
Mecânica clássica e mecânica quântica
A dinâmica de uma partícula pontual de massa em um regime não-relativístico, ou seja, em velocidades muito menores que a velocidade da luz, pode ser determinada através da função lagrangiana[6][7]
, / G ψ = E ψ = E [G+].... ..
em que (que são respectivamente coordenadas generalizadas para a posição e a velocidade da partícula) determinam o espaço de fase do sistema e é o potencial em que a partícula se move. Minimizando o funcional ação
encontra-se a equação de movimento para esse sistema,
,
que é a equação de Newton, desde que .
Existe outra formulação equivalente da mecânica clássica, conhecida como formulação hamiltoniana e que pode ser diretamente relacionada a formulação lagrangiana acima. Para se fazer contato entre as duas formulações, define-se o momento
,
de maneira que a função hamiltoniana é dada por
,
que para a escolha da lagrangiana acima, tem-se
.
Assim como no caso da função lagrangiana, a hamiltoniana descreve toda a dinâmica de um sistema clássico, portanto, considerando uma variação de tem-se um par de equações diferenciais de primeira ordem conhecidas como equações de Hamilton
,
e que equivale a equação de Newton, que é de segunda ordem. No formalismo hamiltoniano, usando a regra da cadeia, pode-se escrever qualquer variação temporal de uma função , em termos das equações de Hamilton acima, de modo que,
onde o parêntese de Poisson é definido como
.
Existem diversas maneiras de realizar a quantização de um sistema clássico, tais como quantização por integrais funcionais e quantização canônica. Esse último método em particular, consiste na substituição do parêntese de Poisson por comutadores[8]
,
onde , são operadores num espaço de Hilbert. Com essas substituições, o parêntese de Poisson entre duas coordenadas generalizadas torna-se
.
Um aspecto importante a ser observado é que os operadores e podem ser representados como os operadores diferencias
de maneira que a função hamiltoniana, torna-se um operador no espaço de Hilbert, chamado operador hamiltoniano que atua em uma função
,
que é a equação de Schrödinger.
Teoria Clássica de Campos
A formulação lagrangiana e a hamiltoniana da mecânica clássica são refinamentos da mecânica newtoniana e permite o tratamento de sistemas com um número finito de graus de liberdade. Considerando um sistema mecânico unidimensional com graus de liberdade, que consiste de partículas pontuais de massa , separadas por uma distância e conectadas entre si por uma mola de constante elástica . A lagrangiana para esse sistema é:
.
Esse sistema pode ser estendido facilmente para o limite em que e . No entanto, se o comprimento total do sistema estiver fixo, tem-se o limite contínuo , de modo que a lagrangiana terá a forma
,
onde representa o deslocamento da partícula relativa a posição no instante de tempo . Também, define-se as quantidades .
Generalizando essa discussão prévia para um sistema relativístico, tem-se uma lagrangiana que será uma função do campo , em que e das derivadas , dessa maneira, o funcional ação pode ser escrito como
.
Finalmente, a lagrangiana pode ser escrita como
,
onde , é conhecida como densidade lagrangiana.[9] A equação de Euler-Lagrange é:
.
Primeiras unificações. Equações relativísticas
Equação de Klein-Gordon
Como foi dito acima, quando Schrödinger primeiro procurou uma equação que regesse os sistemas quânticos, pautou sua busca admitindo uma aproximação relativista, encontrando a depois redescoberta equação de Klein-Gordon:
onde
A equação de Klein-Gordon, às vezes chamada de equação de Klein-Fock-Gordon (ou ainda Klein-Gordon-Fock) pode ser deduzida de algumas maneiras diferentes.
Usando-se a definição relativística de energia
chega-se à equação:
Essa expressão, por conter operadores diferenciais sob o radical, além de apresentar dificuldades computacionais, também apresenta dificuldades conceituais, já que se torna uma teoria não-local (pelo fato de a raiz poder ser expressa como uma série infinita). Por ser uma equação de segunda ordem não permite que fique bem definida a questão da normalização da função de onda.
Fock deduziu-a através da generalização da equação de Schrödinger para campos magnéticos (onde as forças dependem da velocidade). Fock e Klein usaram ambos o método de Kaluza-Klein para deduzi-la. O motivo, só mais tarde entendido, da inadequação desta equação ao átomo de hidrogênio é que ela se aplica bem somente a partículas sem carga e de spin nulo.
Equação de Dirac
Em 1928 Paul Dirac obteve uma equação relativística baseada em dois princípios básicos
- A equação deveria ser linear na derivada temporal;
- A equação deveria ser relativisticamente covariante.
A equação obtida por ele tinha a seguinte forma:
/ G ψ = E ψ = E [G+].... ..
Em física, teoria de gauge na rede é o estudo de teorias de gauge em um espaço-tempo discreto numa rede.[1] Embora a maioria das teorias de gauge não sejam exatamente solúveis, são de grande utilidade pois podem ser estudadas por simulações computacionais. Espera-se que, executando simulações em rede progressivamente maiores, o comportamento da teoria correspondente no contínuo seja recuperado.
Nas teorias de gauge na rede o espaço-tempo passa por uma rotação de Wick, resultando em um espaço euclidiano, descrito por uma rede hiperretangular com espaçamento igual a entre seus sítios. Os campos de quarks são somente definidos nos sítios da rede. Há problemas com a duplicação de férmion, apesar de tudo. Ver ação de Wilson-Ginsparg. Em vez de um vetor potencial, como no caso contínuo, os campos de gauge são definidas sobre as ligações do retículo e correpondem ao transporte paralelo ao longo da borda que assume valores no grupo de Lie em questão. Daí para simular a cromodinâmica quântica (QCD), para que o grupo de Lie é SU(3), existe uma matriz especial unitária 3 por 3 definida em cada ligação. As faces do retículo são chamadas plaquetas. A ação de Yang-Mills é reescrita usando laços de Wilson sobre plaquetas (isto é simplesmente um "caráter" valorado sobre a composição de variáveis de ligação em torno da plaqueta) de tal forma que o limite formalmente dá a ação de contínuo original.
Mais precisamente, nós temos um retículo com vértices, grafos e faces. Em teoria de retículo, a terminologia alternativa sítios, ligações e plaquetas para vértices, grafos e faces é frequentemente usada. Isto reflete a origem do campo em física do estado sólido. Enquanto que cada grafo não tem orientação intrínseca, para definir as variáveis gauge, nós atribuimos um elemento de um grupo de Lie compacto G a cada grafo uma orientação para ele chamada U. Basicamente, a atribuição para um grafo em uma dada orientação é o grupo inverso da atribuição do mesmo grafo na orientação oposta. Igualmente, as plaquetas não têm orientação intrínseca, mas lhe são dadas temporariamente uma orientação para propósitos computacionais. Dada uma representação irredutível fiel ρ de G, o retículo ação de Yang-Mills é
- / G ψ = E ψ = E [G+].... ..
(a soma sobre todos os sítios do retículo do (componente real do) laço de Wilson). Aqui, χ é o "caráter" (traço) e o componente real é redundante se ρ passa a ser uma representação real ou pseudoreal. e1, ..., en são os n grafos do laço de Wilson em sequência. O lado positivo sobre ser real é que se a orientação de um laço de Wilson é trocada, sua contribuição para a ação permanece inalterada.
Há muitas ações de Yang-Mills possíveis sobre o retículo, dependendo sobre qual laço de Wilson for usado a fórmula acima. A mais simples é a ação de Wilson, na qual o laço de Wilson é apenas uma plaqueta. Uma desvantagem da ação de Wilson é que a diferença entre ela e a ação contínua é proporcional ao espaçamento do retículo . É possível usar laços de Wilson mais complexos onde esta diferença é proporcional a , tornando as computações mais precisas. Estas são conhecidas como "ações melhoradas".
Em física, um termo cinético é a parte do Lagrangeano que é bilinear nos campos (e para os modelos de sigma não lineares, eles não são ainda bilinear), e geralmente contém duas derivadas em função do tempo (ou espaço); no caso dos férmions, o termo cinético geralmente tem apenas uma derivada. A equação de movimento derivada de tal Lagrangiano contém operadores diferenciais que são gerados pelo termo cinético.[1][2]
Na mecânica, o termo cinético é
- / G ψ = E ψ = E [G+].... ..
Na teoria quântica de campos, os termos cinéticos para campos escalares reais, campo eletromagnético e campo de Dirac[3][4][5][6] são
- / G ψ = E ψ = E [G+].... ..
dinâmica quântica é o estudo das relações entre duas teorias físicas independentes: termodinâmica e mecânica quântica.[1][2] As duas teorias independentes tratam dos fenômenos físicos da luz e da matéria. Em 1905, Einstein argumentou que a exigência de consistência entre termodinâmica e eletromagnetismo[3] nos leva à conclusão de que a luz é quantizada obtendo a relação . Este artigo é o início da teoria quântica. Em algumas décadas, a teoria quântica se estabeleceu com um conjunto independente de regras.[4] Atualmente, a termodinâmica quântica trata do surgimento de leis termodinâmicas da mecânica quântica. Ela difere da mecânica estatística quântica na ênfase em processos dinâmicos fora de equilíbrio.[5] Além disso, há uma busca pela teoria para ser relevante para um único sistema quântico individual.[6]
Visualização dinâmica
Existe uma conexão íntima da termodinâmica quântica com a teoria dos sistemas quânticos abertos.[7] A mecânica quântica insere dinâmica na termodinâmica, dando uma base sólida à termodinâmica para tempo finito. A principal premissa é que o mundo inteiro é um grande sistema fechado e, portanto, a evolução do tempo é governada por uma transformação unitária gerada por um hamiltoniano global. Para o cenário combinado do banho do sistema, o Hamiltoniano global pode ser decomposto em:
- / G ψ = E ψ = E [G+].... ..
onde é o sistema hamiltoniano, é o banho hamiltoniano e é a interação sistema-banho. O estado do sistema é obtido a partir de um rastreamento parcial sobre o sistema combinado e o banho: . Dinâmica reduzida é uma descrição equivalente da dinâmica do sistema, utilizando apenas operadores do sistema. Assumindo a propriedade de Markov para a dinâmica, a equação básica de movimento para um sistema quântico aberto é a equação de Lindblad (GKLS):[8][9]
- / G ψ = E ψ = E [G+].... ..
é uma parte hamiltoniana (Hermitiana) e :
- / G ψ = E ψ = E [G+].... ..
é a parte dissipativa que descreve implicitamente através dos operadores do sistema a influência do banho no sistema. A propriedade de Markov impõe que o sistema e o banho não estejam correlacionados o tempo todo . A equação L-GKS é unidirecional e conduz qualquer estado inicial para uma solução em estado estacionário que é invariável da equação do movimento .[7]
A imagem de Heisenberg fornece uma ligação direta para observáveis termodinâmicos quânticos. A dinâmica de um sistema observável representado pelo operador, , tem a forma:
- / G ψ = E ψ = E [G+].... ..
onde a possibilidade de que o operador, é explicitamente dependente do tempo, está incluído.
Na mecânica quântica, e especialmente no processamento quântico de informações, a troca de entropia de uma operação quântica , atuando na matriz densidade de um sistema é definida como
- / G ψ = E ψ = E [G+].... ..
onde é a entropia de von Neumann do sistema e um sistema auxiliar purificador fictício depois de serem operados por .[1] Aqui,
- / G ψ = E ψ = E [G+].... ..
- / G ψ = E ψ = E [G+].... ..
e
- / G ψ = E ψ = E [G+].... ..
onde na equação acima atua em deixando inalterado.[2]
Comentários
Postar um comentário